(I’ve decided to write a few posts about the themes I explore in my new sci-fi novel, as I go through the process of seeking representation and trying to publish it.)
Pop science fiction is rife with scientist characters — yet, many of them are depicted either as supporting encyclopedias or as the untested and untrained learner at the feet of a protagonist. For the first, think of Gaius Baltar in Battlestar Galactica, who was introduced specifically as a cyberneticist — but who, after a couple episodes, is the single resident expert in biology, genetics, and nuclear physics. For the second, think of Jeff Goldblum’s hacker in Independence Day, who’s an expert in his domain, but whose main character arc is being taught how to not look at the cool explosion behind him by Will Smith’s hero. Rarely have I seen a story with a scientist — or even a team of scientists — who are the heroes because of their scientific efforts. So, one of the major themes in my recently completed novel is the depiction of scientific effort, the scientific process, and scientists themselves as heroic.
This thought process started way back around 2010, when I had Battlestar Galactica fresh in mind as I was working through a Ph.D. program. I realized that the way grad students thought of their work — grinding lab experiments, flashes of inspiration, high-stakes exams, publications, reviewers and revisions, rival labs, friendly compatriots, and romantic relationships — held enough drama to fill an epic. I followed this thread by writing a short story. I wrote about Ceren Aydomi, an early-career scientist struggling to prepare her results for publication at a conference. She makes a last-minute tweak to her analysis and thinks she’s uncovered a groundbreaking result. After her presentation, she fields questions — and she expects to treat this process like a battle, so it becomes one. A more established scientist belittles her work in front on everybody. But, in reeling from that experience, she kindles new relationships. Much of this was inspired by things that happened to me or the grad students around me.
In the novel, my scientist’s story expands from here. Ceren’s new result turns out to be correct, and terrifies her — but she has to fight an uphill battle to convince anyone else of its import. Her advisor is indifferent to her, and her institution doesn’t support her. She even faces repressive conspiracies and political headwinds, as she tries to raise awareness of the dangers she’s discovered with the government — only to have a politician, whose interests aren’t served by acknowledging the threat, turn her away. (The conspiracy’s weapons include campaign finance loopholes. Can you tell that another major theme running through this story is the climate crisis?) But, in making that all-too-political deflection of scientific results — “more study is needed before we’ll know enough to discuss policy!” — the politician tries to brush her off by putting Ceren in charge of the makework “more study” effort. And this is the call to adventure where Ceren starts to pick up a more heroic mantle: she’s been set up to fail, starting from scratch, but she has a network of colleagues and friends she can draw on. She takes her new position and sets out to do science. She builds herself a team of fellow scientists, disparate personalities all moving with a single purpose. She becomes the leader of a research effort, pushing forward until she finds a result that cannot be ignored. Her evolution is from early-career researcher to project leader. In this crucible, she makes new friends, weathers tragedies, suffers others trying to capitalize on her work, and finds love.
And it still is a space opera. She travels to exotic places, finds herself in battles, and deals with ancient sources of power. In the end, it’s Ceren whose actions must provide the resolution for the epic plot. And it’s her integrity and compassion — virtues of the modern scientific process, absolutely necessary for collaborating on multidisciplinary teams! — that make her exactly the right person for the job.
Update 18 June 2024: As discussed in the comments, a reader pointed out that I was misinterpreting the indication of the month of the year, and Lego’s instructions are correct. I’ve struck out the incorrect portions of this post. (And I’ve corrected the model on my desk.)
When I saw that Lego was releasing an orrery, I knew that I had to get my hands on it — for work! I deal with new space mission concepts around the Moon with some regularity, and you have no idea how often I find myself thinking, okay, that lamp is the Sun and my hat is the Earth, so the spacecraft has to point its solar panels over there — but then the Earth moves, so it has to point over there now…. A functional desk orrery would actually come in handy! Well, I’ve finally purchased and built Lego set #42179: Planet Earth and Moon in Orbit.
Here’s what I think of the model and how well it captures the real motions of the Sun-Earth-Moon system.
As I write this, it is 50 years to the moment after the Lunar Module Eagle ascended from the surface of the Moon, carrying a victorious Neil Armstrong and Buzz Aldrin up to their rendezvous with crewmate Mike Collins in the Command Module Columbia. Although I am too young to have personal memories of this event, I’ve been following the mission on its 50th anniversary through the web site Apollo in Real Time. It’s been exciting, and I, like many others involved in the space industry, have been driven introspective.
Why did we send Apollo 11 to the Moon, and why should we keep sending people to explore space?
The first question is all about geopolitics. The United States sent Apollo 11 to land on the Moon because the country wanted a very public way to demonstrate the superiority of its technical capabilities over the Soviet Union. The deep political worry at the time was that the USSR would not only beat the US to the Moon, but that they would emplace weapons there that the US could not counter-target — messing up the strike and counter-strike strategies underlying the insanity of mutually assured destruction. So, the US also decided to conduct its lunar landing in a way that would establish a specific set of norms for space exploration activities: We do this on behalf of all the people of Earth. We are here for science and knowledge. We show the world everything we do, as we do it. We come in peace, for all mankind. Apollo 11 literally left a model of an olive branch on the Moon.
But now the race is long over, and the norms established are taken for granted (if we remember them). Why continue? I find this a difficult question for me to answer — partly because I don’t believe several of the common arguments to be very compelling. Those arguments are science, spinoff technology, and inspiration.
Science is the easiest to dispense: our robotic probes reach across the Solar System, relaying extensive data back to scientists on Earth. The time, effort, and expense of sending a human mission to, say, Mars, absolutely dwarfs the cost of a robotic science mission. As an example, a recent report estimated the cost of a 2037 Mars mission as $120 billion (not including some other significant developments like a precursor lunar landing); the NASA Science Mission Directorate puts a cost cap of about $600 million on Discovery-class missions like the InSight lander, meaning we could send 200 robotic missions for the cost of one human mission. We would have to make sure that the science output of a human mission is at least 200 times better than the science of a robotic mission, and I’m not sure that’s a case one can make. Likewise, while space exploration, and human spaceflight in particular, has produced a great deal of technology that we now use on Earth in engineering, science, medicine, and daily life — those “spin-off technologies” are, almost by definition, ancillary benefits of a development program that had a different objective. This isn’t a bad thing (and NASA investment is far better at spinning off technology than, say, military investment)…but if we as a society have the goal of getting those technologies, we would just fund their development in the first place, rather than hoping that useful spin-offs come out of another program.
It seems to me like inspirational power is the most common reason cited to continue human spaceflight activities. Here, for example, is the current NASA administrator on Twitter:
Whenever someone tells me that the United States needs to inspire more students to study scientific and engineering fields, I want to ask them: What comes after this great inspiration? When a student says that NASA activities make them want to study math and science — are we, as a nation, going to invest in a technical education system to support their ambitions? Because, right now, we do not; those students are left hanging with the means already at their family’s disposal. And then suppose that these inspired students do get a degree in science or engineering: what do they do with it? Supposedly there has been a “STEM shortage” for years, but I do not see it materializing in a shower of job offers for recent graduates. Where are the university science departments desperate to fill vacant professorships? Where is the bipartisan call to expand the civil services of NASA, NOAA, NSF, CDC, and other national scientific agencies? Where are the private research and development organizations with a backlog of open lab positions to fill? Where are the engineering firm recruiters waiting eagerly outside the doors of college engineering buildings? Our lack of national investment in technology, research, and development belies our stated goals. And, in the vacuum, our previously inspired students are off to Google and Facebook to tweak the algorithms for selling users’ private data to advertisers.
My engineer’s brain struggles with the fact that I can come up with other rationales for human spaceflight, but they seem somehow squishier than the arguments above — the ones I don’t find very resonant after a little thought. After all, the arguments I described so far seem quantifiable: number of undergraduate degrees awarded in STEM fields. Number of scientific papers written by human spaceflight researchers. Number of commercialized technologies. Maybe the solution is to look at the problem with something other than an engineer’s brain.
I think the purpose of human spaceflight should be to expand human life out into the Solar System.
I also think that the reason we don’t often hear this statement articulated is that spaceflight proponents (especially NASA staff) don’t believe this argument will resonate with the public, but I believe they are wrong about that.
People get invested with spaceflight when the engineers, scientists, and astronauts involved connect spaceflight with human experience. Look at Neil Armstrong’s contemplative words as he took his first steps on the Moon. Look at Chris Hadfield singing “Space Oddity” aboard his own tin can. Look at the engineers at JPL whooping as a robot touches down on Mars. And look at the way these things catch the public eye, in a way that a purely technical accomplishment does not. Human experience has a value all its own — despite seeing the pictures and reading about the scientific results, I still want to ask the surviving Apollo astronauts, what was it like?! No, really, what was it like, on the Moon? I think it is worth having people living and working in space, for the sake of connecting the awesome experience of our cosmos to our humanity, and for creating an enduring example of what humans can achieve when we pull together and decide to build something.
Ultimately, I want to see permanent human habitation in space and on other planets. Beyond the romantic notions, there are some simple economic drivers that ought to push us in that direction. Any economic model that assumes growth, on a finite planet, is going to run into trouble eventually — and considering some of the anticipated resource shortages connected to the climate crisis, that point may come sooner than we think. (For another thing, with the world’s most powerful militaries blindly chasing “capabilities” in a way that brings us ever closer to nuclear war, I’d feel a lot more comfortable for the future of humanity if some of us were outside their reach.) No place that we’ve yet discovered will be as amenable to human life as the Earth, even in the face of climate crisis or asteroid impact, but that fact does not mean that we won’t eventually need to have humans off the Earth’s surface.
Now, if that’s really the winning justification for human spaceflight — having humans living in space and developing a culture that connects back to people on Earth — then that implies some changes to NASA’s objectives. Instead of having astronauts “learn to live and work in space,” NASA ought to get people actually living and working in space. This brings to light another reason why we may not see human habitation put forward as the reason for human spaceflight: I am asking for a major, concerted effort on NASA’s part; one that emphasizes long-term approaches to human spaceflight and spacecraft at the expense of the Apollo short-term race approach. We should be looking at regular launches to low Earth orbit, major development effort on in-situ resource utilization, designing and building large habitats that are amenable to long-term human life and work, and allowing a great deal of autonomy to the people in space. But, just as it’s nearly impossible for the US government to close unneeded military bases, it’s proven impossible to reorient NASA from the same kinds of work that has been done at each NASA field center for decades, going all the way back to the 1960s.
Which brings us, of course, to the reason why no humans have set foot on the Moon since the Apollo program: politicians like to have NASA, but they don’t like the implications of having NASA do things. Having NASA do things requires allocation (and re-allocation) of resources. They’ve tried to have it both ways, for decades, by splitting the difference. And we’re left trying to justify the space program as it is, with unconvincing arguments, instead of having a rationale behind the total human spaceflight endeavor and building a space program to satisfy that rationale.
Having a resonant driving force behind human spaceflight could help NASA maintain consistent direction in the decades to come. Do I have the winning argument? I really don’t know. But one thing’s for sure: the arguments we’ve been using so far aren’t working very well, if holding human spaceflight to steady progress is the goal.
Scientists are planning a “March for Science” in Washington, DC and many other cities on 22 April 2017. Some commentators seem to think this is a bad idea, because it would politicize science.
Before I continue, let me suggest the form an intellectually honest debate about global warming would take:
Scientists:
Global warming is happening.
It will cost $X to stop and/or mitigate global warming. If we do not stop and/or mitigate it, it will cost $Y to deal with the resulting property damage, logistical problems, loss of standard of living, food supply shortages, disease outbreaks, and security threats. $Y is much bigger than $X.
Democrats:
Okay. We think that from an economic, social, and security standpoint, we would be better off paying the smaller amount up front, $X, than having to deal with all those problems individually later on.
Republicans:
Okay. We think that the impact to certain market sectors would be too great to pay the $X up front. We think we are better able to pay installments of the larger cost $Y later on, as those various problems crop up.
Now, allow me to summarize the form the actual debate about global warming seems to be taking in the United States:
Scientists:
Global warming is happening.
It will cost $X to stop and/or mitigate global warming. If we do not stop and/or mitigate it, it will cost $Y to deal with the resulting property damage, logistical problems, loss of standard of living, food supply shortages, disease outbreaks, and security threats. $Y is much bigger than $X.
Democrats:
Okay. We think that from an economic, social, and security standpoint, we would be better off paying the smaller amount up front, $X, than having to deal with all those problems individually later on.
Republicans:
Global warming is not happening.
Scientists:
But we just told you that it is, and presented our evidence, and told you the cost of ignoring–
Republicans:
Stop doing science.
It’s easy to say that scientists should keep themselves in the business of producing scientific evidence and scientific conclusions, and stay out of the business of figuring out how to act on those conclusions. Science, after all, doesn’t tell us anything about morality or ideals, it just describes what happens in the world.
What does someone do, though, if they hold a particular position, and science produces definitive evidence suggesting that their position does not give them the result they want? In my field of engineering, the correct response to this scenario is to redesign my system so that I do get the result I want. I have to trust that the most up-to-date scientific theory is the most accurate description available of how my design will actually work, regardless of what I want my design to do. However, more and more, we are seeing a different strategy emerge in the field of politics: attack the science itself. Cast aspersions on the scientists. Talk about presenting “alternative facts,” as though physics behaves differently depending on one’s ideals. Cut off the ability of scientists to conduct their work, if one thinks that they will uncover evidence disfavoring one’s suggested course of action.
This is not a good way to solve problems.
What I believe scientists are standing up for in their march is simply the idea that decisions should be based on evidence. Conclusions should be based on a strong argument. Engineers know this. Businesspeople know this. Doctors know this. Scientists know this. Politicians should, too.
Scientists may not be perfect people, and an individual scientist’s conclusions may not be completely correct. Lots of factors feed into this: the tenure process, aggressive university publishing policies, limited funding, and severe competition leading to hype. But that is why we conduct science as a community, and as part of a larger iterative process. Scientists as a whole are always improving the state of knowledge. Others follow to correct and refine previous knowledge. As such, the current state of the art does represent the best available scientific description of the world. And, in many cases, that description has been converging. So, I can say with confidence: Global warming is happening, and human-caused, and has real economic costs. Vaccines don’t cause autism. GMOs are fine to grow and eat. The collapse of the bee population is going to cause big problems for agriculture. Coal power is just more expensive than natural gas (and, soon, wind and solar). Tax cuts for the wealthy are not as effective at stimulating the economy as government investment. No refugee from the Middle East has committed a terrorist attack in the United States. American police shoot black people at a disproportionately high rate. These are all things we can measure, facts based on evidence. There are no alternatives.
What do we do about these things? Do we do anything about them? Yes, those are questions for politicians to debate. But I can tell you this definitively: cutting off support for the science that produced evidence of a problem does not make things better. Politicians who advocate doing so are not going to help solve those problems, and we all need to remember who they are and how they are exacerbating our problems.
That is why scientists should call attention to their work and to their efforts. They need to remind everyone that evidence matters and decisions based on evidence matter. They need to remind people that experts have expertise. This march is not just about science, it is about the very idea that we can observe the world and use our observations to inform our expectations about the future. It’s about stating the reality of reality as opposed to “alternative facts.”
The idea that scientific evidence is a description of reality is not a political statement. I can understand how that might be hard to grasp, though, for a party whose paragon once took an incorrect position and said, “my heart and my best intentions still tell me that’s true, but the facts and the evidence tell me it is not.”
This week, NASA announced the selection of nine instruments for a proposed mission to Europa. Europa is probably the best place we know about to find alien life, and the discovery of alien life would surely be an achievement rivaling the moon landing in NASA – and human – history. I have an issue with the thinking presented by NASA in its press releases, though. Agency spokespeople say things indicating that the purpose of the Europa mission is to determine whether or not Europa “could be habitable.” The exact phrase on the web site linked to above is that this mission is part of “our search for oases that could support life” (emphasis mine). That’s not what I want from a mission to Europa. Probes to outer planets come decades apart, so I want to get as much done in a single shot as possible. What I want is to determine whether or not there is life on Europa.
The important difference between those two statements – determine whether Europa could support life and determine whether Europa has life – betrays a slight difference in ambition. I want the big-risk, big-reward activities and objectives of a true moonshot. NASA is hedging its statements, and lowering the bar of its mission goals.
I’m coming to believe that the statement about Europa Clipper’s objectives is symptomatic of a general lack of ambition in NASA’s modern thinking. You can see it in other statements the agency makes: Mars Science Lab Curiosity‘s mission was to determine whether Mars, at some point in its past, could once have been an environment that supported life. The oft-repeated purpose of the “proving ground” activities in the human spaceflight program’s “Journey to Mars” campaign is to “learn how to live and work in space.”
I don’t want to do those things. I want to find out if there is life on Europa; similarly I want to find out if there is (or was) life on Mars, and I want people to live and work in space.
Ironic that a space program – of all things – would lack ambition, isn’t it?
You might think that this is just the public relations spin. NASA is trying to manage expectations, so that they know they can achieve the first objectives of any mission and claim success immediately. Then they can parade that success in front of Congress, while the scientists go after their real scientific objectives in the “extended mission.” But I think the underlying philosophy here is penetrating beyond the publicity level into the actual mission design. It’s easy to find statements from scientists, engineers, and NASA spokespeople that Curiosity couldn’t actually find life on Mars unless that life walked in front of its camera and waved hello. To me, those statements beg the question: why not? We sent a nuclear-powered jetpack-landed laser-toting robot all the way to Mars, why wouldn’t we put some instruments on it that can identify basic things like amino acids? Similarly: NASA sends a probe to Jupiter approximately once per decade (and slowing). Since that rate keeps dropping as time passes, why wouldn’t we try to answer the big questions as soon as we can?
The way NASA now formulates its missions, I can just imagine a variation of Kennedy’s famous moon landing speech: “Our nation should dedicate itself to the goal, before this decade is out, of lifting a man five inches above the surface of the Earth. If that is achieved, this mission is a complete success. As a stretch goal, we might have that flight go to the Moon.”
The great thing about opening up the ambitions of our space program is that it would enable engineers to implement known solutions to the problems we face in space. For example: we know that humans have health problems after spending long periods of time in microgravity. Do we need to keep answering the question of whether or not humans have health problems after spending long periods of time in microgravity? Or can we instead think about the details of building spacecraft that spin to provide artificial gravity? Similarly, we know that there are extreme logistical challenges in sending people to Mars. Do we think about long a mission we could run given the amount of food we can send up with our astronauts, or can we think about the details of having them grow food on Mars?
The difference between those questions is the difference between “learning to live and work in space” and “living and working in space.”
It’s also the difference between the space program we have, and the space program we imagine.
There is a recent National Science Foundation report out that says, over the decade from 1993 to 2013, the number of college graduates in science and engineering fields grew faster than the number of graduates in any other fields. By 2013, we got up to 27% of college graduates getting their degrees in science or engineering. Hooray! STEM crisis solved, right?
I actually see something in this report that I find quite worrying, and a sad commentary on the state of science and engineering in the United States.
The report says that only 10% of all college graduates got jobs in science or engineering fields. That statistic means that, although 27% of our graduates are in STEM fields, at least 17% of graduates got their degree in science or engineering but couldn’t find a job in any scientific or engineering field. Put another way, at least 63% of STEM graduates couldn’t get a job in STEM fields!
The STEM crisis, in my opinion, isn’t about the number of graduates. It’s about the support our country and society gives to science and engineering. Our government has forsaken basic research in favor of maintenance-level defense tasks and austerity. Our companies have forsaken applied research in favor of “killer apps” and next-quarter profits. In light of those actions, it’s no wonder that we’re now worried that other nations might leapfrog us technologically.
If we want to get out of this hole we dug, we need to dramatically increase our support for science, engineering, and innovation.
Sometimes, I wish I had more Republican Congressmen to write to.
Human-caused climate change is a national security issue. It threatens our lives, our property, and our way of life. And it is the only thing that we know, for a scientific fact, will threaten the American people in the future. We ought to start treating it as such, and start investing, on a national scale, in stopping it.
Ignoring the problem is, in my mind, tantamount to embracing Chamberlain’s security strategy in the late 1930s: a course for further destruction and calamity.
Tuesday night, Bill Nye (the Science Guy) had a webcast debate with Ken Ham, founder of the Creation Museum. In many respects, this was a silly idea. Nye wasn’t going to change any minds, and I think he fell into the traps creationists try to set: distracting him into side issues, for example, or redefining the terms of the debate. Moreover, the Creation Museum benefited monetarily from the event.
I admire Nye for being willing to make the attempt, but in the end, I think the event was a wasted opportunity. The whole reason for the debate was not to contest the relative merits of creationism versus science. Rather, the spark for the event was Nye’s contention that teaching creationism in schools is dangerous. And I agree with him – for two fundamental reasons that Ham illustrated beautifully throughout the debate, but I don’t think Nye ever articulated. Continue reading Despite tactical errors, Bill Nye is right→
Europa appears to have all the ingredients for life as we know it: liquid water, energy sources, organic molecules. Scientists have known these things since the Galileo mission to Jupiter. But we haven’t gone back to look for life under the ice – because designing and mounting a mission to do so would be a multi-year, expensive effort. It’s much simpler, and less expensive, to think about smaller missions to Mars, which could launch at a cadence of once every couple years. However, the scientific, societal, psychological, educational, inspirational, and public reward of discovering extraterrestrial life certainly would make a multibilliondollar Europa mission worthwhile.
What the new discovery gives us is easy access to Europa’s subsurface material. Perhaps we can sail a probe through these geyser plumes, testing for biological components. Perhaps we can trawl a few space squid while we’re at it. The easy access, while not up to the same level as Mars, certainly makes a Europa mission easier to think about than one that has to drill through a hundred kilometers of ice!
So, the Mars Science Laboratory “Curiosity” has discovered evidence that, about three billion years ago, the environment on the planet Mars could have supported Earth-like microbial life. Some news outlets (including the MSL Twitter feed) are billing this discovery as the accomplishment of Curiosity’s mission.
I have a confession to make.
I don’t really find this discovery all that exciting.
The MSL team’s discovery is a confirmation of a long-expected hypothesis. (Indeed, with the number of planetary environments out there, it would be statistically silly to think that Earth is the only life-supporting place!) It’s valuable to know, and it’s important to the scientific method to rack up such confirmations even when we’re as sure as we can be, but it doesn’t exactly have the same allure as striking out into the unknown. I think the spirit of exploration is important to maintain in our space programs, because brand-new missions and discoveries are what keeps space exploration in the public eye. After all, a recent study shows that not only do most Americans want to see exploring Mars as a national priority, but most Americans want to see a human mission to Mars and three-quarters of Americans want to see the NASA budget doubled. I am confident that the dramatic landing of the Curiosity rover, with its brand-new mission architecture, has something to do with that enthusiasm.
There’s also something I find slightly foreboding about Curiosity’s confirmation. In 2011, the National Research Council’s Planetary Sciences Decal Survey of Solar System exploration listed and prioritized the objectives of our planetary science program for 2013 through 2022. This is a study done every ten years to identify which of the flagship-sized missions NASA should fund, design, and launch in the coming decade. First on the list for 2013-2022: a mission to return samples of Martian rock and soil to Earth. The announced “Mars 2020” rover is in line with that objective.
I’m going to go out on a limb and predict the conclusion sentence of scientific findings from a Mars sample return mission:
Chemicals and minerals present on the surface of Mars indicate that ancient Mars may have included wet environments able to support Earth-like microbial life.
In other words, I don’t think a Mars sample return mission will give us any dramatically new information that we didn’t already have from MSL, MER, MRO, or any of the Martian samples we already have. See what’s got me worried? I don’t think we’re going to actually discover life – in fact, I would be very surprised if the 2020 rover included any instruments actually capable of recognizing a Martian if it walked right up, poked the rover with a Martian stick, and walked away. (Curiosity doesn’t!) I am afraid that we will put this rover on the Red Planet in 2020, cache a sample, retrieve the sample in 2030, and the public response will be, “wait a minute, we spent two decades confirming what we already knew in 2013? Come on, space program…where’s my jetpack?”
A Mars sample return mission would be a triumph…for the niche sub-field of Martian geochemistry. I don’t think it would have the sort of broad scientific and public impact that we should expect from a flagship-scale mission. Basic research science plods along, making incremental improvements in understanding and slow-but-steady progress. NASA should be sticking its neck out, thinking big, and going for the most challenging – and rewarding – missions. Instead of looking for environments that might have been habitable three billion years ago, we should be looking for actual life.
You see, even before MSL’s discovery, we already knew of the existence of a watery, potentially life-supporting environment. Jupiter’s moon Europa has an icy crust with a subsurface water ocean beneath. The ocean is warm enough to be liquid, because of the energy input from Jupiter’s tides. And scientists have found that that ocean contains lots of salts and minerals – and even organic (carbon-containing) compounds. Liquid water, energy sources, and chemical building blocks: everything an Earth-like life form needs! The main difference between Europa and Mars is that, while we’ve been able to observe the desolation of the Martian surface for decades and know that we could only expect to find evidence of ancient microbes, we have no idea what’s under the Europan ice sheet. It could be nothing…but it could also be life as rich and complex as what we find, on Earth, under Antarctic ice, in sealed cave systems, or around hydrothermal vents. Unlike Mars, where we have been forming preliminary conclusions for years, we won’t know until we get something under that ice layer. That’s the kind of exciting exploration work that I want to see from my NASA flagship missions.
The Decadal Survey did recognize the potential for alien life on Europa. Its executive summary says that “the second highest priority Flagship mission for the decade 2013-2022 is the Jupiter Europa Orbiter” but notes that “that both a decrease in mission scope and an increase in NASA’s planetary budget are necessary” to fly a mission to Europa. Personally, I’d prefer to discover alien creatures within my lifetime…but I don’t make policy or control the purse-strings. So, instead, off to Mars we’ll go again.